

Optimal Pricing Rule for One-way Airline Tickets

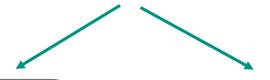
Empirical evidences

Marco Alderighi, Università della Valle d'Aosta

Co-authors: Irina Ungureanu, Christophe Feder

Dynamic pricing in airline industry

Time based theory	Capacity based theory
 Gale and Holmes (1992, 1993) Gallego and van Ryzin (1994) Piga and Bachis (2007) Möller and Watanabe (2010) 	 Dana (1999) Escobari and Gan (2007) Deneckere and Peck (2012)


Combination of both theories

- Anjos, Cheng and Currie (2004)
- Alderighi, Nicolini and Piga (2014)
- Alderighi, Gaggero and Piga (2018)

Anjos, Cheng and Currie (2004, JORS)

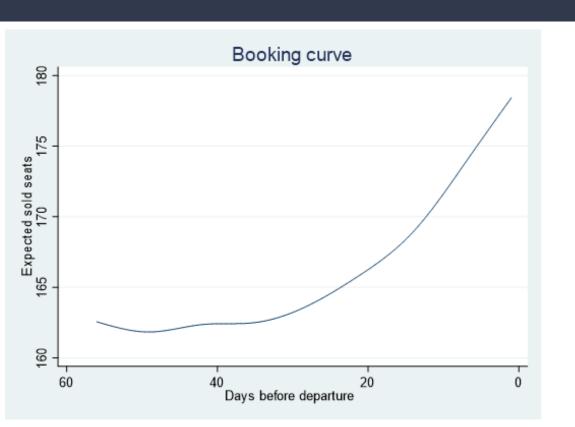
What -> optimal pricing rule for airline tickets under oneway pricing

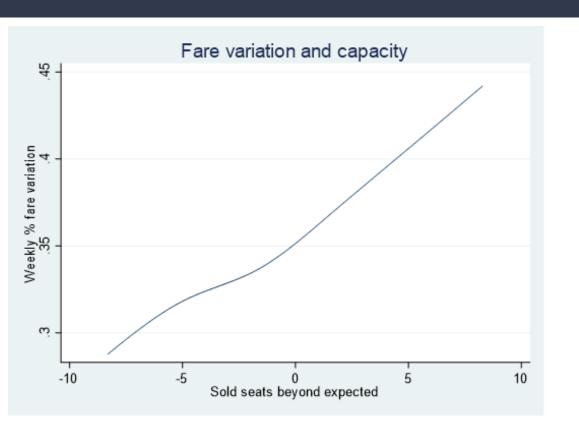
How -> analytical model + standard analytical method for constrained optimization

Results -> simple pricing rule; relationship between days before departure and distance from expected booking curve

Dataset

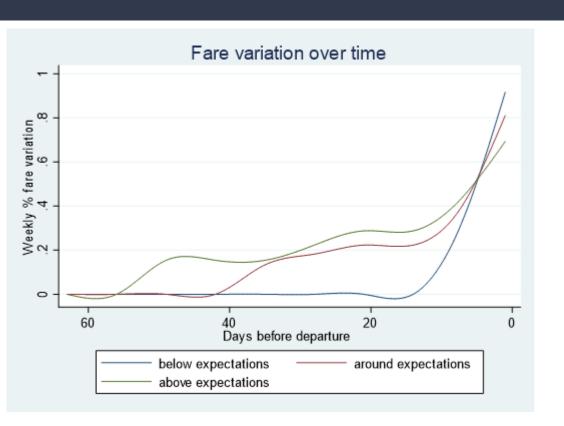
- → Sample routes / period / collection
 77,221 Ryanair flights, 81 out of 154 routes from UK over
 Jan 2004 Jun 2005; data collected with an electronic spider
- → Fares
 11 fares at different days to departure (weekly sampled)
- → Seats


 Available seats detected if less than 50


- > Fare hikes over time
- From day 42 to day 21 fares grow at a decreasing rate
- ➤ Inflection point at day 21
- ➤ Growth at increasing rates during the 2 weeks before departure

- ➤ Increasing number of seats sold when approaching the departure date
- Booking curve: mean calculated on available seats

- ➤ Anjos, Cheng and Currie (2004) conjecture satisfied
- > Fares follow a simple rule:
 - increase more when above the booking curve
 - o increase less when **below** the booking curve



- Simple pricing rule continues to hold over different booking periods
- Relationship between sold seats beyond expected and fare variation evolves in time

- On average, fares are rised more and earlier when above the booking curve
- On average, no evidences for price drops (Biloktach, Gaggero & Piga, 2015, TM)

Methodology

→ Sample selection

Aircraft capacity: 0 - 189

Available seats detected: if less than 50

Bias corrected with: Tobit regression (Alderighi et al., 2014)

→ Panel data approach

Log-lin random effect panel estimator with selection coefficient

 \rightarrow $\Delta \ln (Fare) = sold seats beyond expected + D(days to departure) + selection coefficient$

Results

$\Delta \ln(\text{Fare})$	(1)	(2)	(3)
$\Delta E(Seats)$	0.020***	0.008***	
$\Delta E(Seats)^+$			0.015***
$\Delta E(Seats)^-$			-0.002
1 day to dep.		0.884***	0.860***
7 days to dep.		0.520***	0.496***
14 days to dep.		0.234***	0.214***
21 days to dep.		0.192***	0.177***
28 days to dep.		0.153***	0.144***
35 days to dep.		0.145***	0.139***
42 days to dep.		0.123***	0.119**
49 days to dep.		0.123**	0.123**
56 days to dep.		0.112**	0.114**
Λ	0.019***	0.007***	0.008***
Constant	0.864***	0.256***	0.217***
R-squared	.00475	.0364	.0372
Observations	107043	107043	107043

Standard Errors clustered by route. Significant at *10%, ** 5%, and ***1%.

Conclusions

- Optimal simple pricing rule confirmed
- Both capacity and time theories prove to be relevant, especially if considered together
- > Fares hike over time, mainly during the 2 weeks before departure
- Symmetric fare variation when sold seats are above or under expectations

Future steps

➤ Instrumental variable approach (endogeneity fare & available seats)

➤ Bayesian approach for estimating expected booking curve

Test the same model for other companies (e.g. full service)